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ABSTRACT

This report summarizes the results of a 30-month program of
design, fabrication, and test of an advanced electronic engine
control system for small (2-to 5-lb-per-second airflow) turbo-
shaft engines. The objective of the program was to develop
engine control system technology which could be implemented in
future systems to alleviate many of the problems experienced
with past and present control systems.

The control system selected for development is based on the
results of design trade-off studies, user surveys, and compo-
nent testing. The system incorporates closed-loop control of
turbine blade temperature as sensed by a radiation pyrometer
for blade protection, Wp/Pt3 scheduling for starting, acceler-
ation and deceleration, isochronous power turbine and propor-
tional gas producer governing, torque limiting, load sharing,
start sequencing control, and compressor geometry control.

The system is comprised of three modules: a fuel-cooled hy-
brid electronic computer, a fluid controller with integral
37,500-rpm pump, and a remote electrohydromechanical engine
geomretry actuator. The system also includes the necessary en-
gine parameter sensors. During the program, provisions for
developing a regulated alternator were added to the original
scope of work.

Closed-loop tests successfully demonstrated the control system
performance on both a 2- and a 5-1b/sec analog computer engine
simulator. Environmental temperature endurance testing and
fuel contamination testing were successfully completed.

It was determined that additional redesign and development in
the electronic computer and fuel pump portions of the system
could result in significant improvements in reliability and
efficiency. 1In addition, recently developed micropower elec-
tronic components offer low sensitivity to noise and voltage
variations, and negligible self-heating. Although these new
components were not evaluated under this program, their incor-
poration should improve the electronic computer design.
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FOREWORD

This is the final report covering work completed under Con-
tract DAAJ02-70-C-0002 (Task 1G162203D14416). The program

was conducted under the direction of Mr. Roger Furgurson,
Eustis Directorate, U. S. Army Air Mobility Research and
Development Laboratory, Fort Eustis, Virginia. The program
work was conducted by Colt Industries Inc., Chandler Evans Inc,
Control System Division under the cognizance of J. 0. Nash,
Vice President of Engineering and D. F. Wills, Program Manager.
Acknowledgment is given to all the Chandler Evans personnel
working on the program and all of the engine, airframe and
sensor manufacturers who have contributed to the program.
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INTRODUCTION

Control systems for gas turbine engines are normally developed
in parallel with the development of the engine. The peculiar-
ities of each gas turbine engine and the inherent inflex-
ibility of conventional hydromechanical controls often result
in costly control system development programs. Generally,
these development programs yield clever solutions, br .
applicable only to the problems on the particular engine

heing developed.

Furthermore, significant advancement has been made in gas
turbine engine technology durina the past decade. This
technology has provided substarcial reduction in the weight,
size, and frontal area of the engine. Moreover, further
reductions are possible if accessory gearboxes can be
eliminated and if more of the engine accessory functions can
be integrated within the engine control system. It is
necessary, therefore, to develop a cuntrol system technology
which offers flexibility for wide application potential and
which incorporates control features and engine accessory func-
tions which reduce requirements for accessory gearboxes.

In view of the recent advances that have been made in elec-
tronic sensors and computing devices, it appears reasonable
that a flexible control using electronic techniology can be
developed for gas turbine engines. Electronic control
eliminates the need for a gearbox other than for the pump
drive. With a high-speed pump capable of being mounted on
the engine shaft, this gearbox could also be eliminated.
Other potential advantages of using electronic control are
high accuracy, reduction in vulnerability, less sensitivity
to fuel contamination, and smaller size and weight.

Based on current technological forecasts, the unit cost of
electronic controls will be less than their hydromechanical
control counterpart within the production time frame considered
in this program. The total life cycle cost of an engine and
control system with an electronic control can also be improved
considerably. Simple diagnostic and maintenance procedures
can be .implemented because the engine and control variables
are available to provide continuous or sampled information on
the state of the engine and control. Modular construction

of the control will allow simpler maintenance procedures for
identification and repair of control problems.
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The objective of this 30-month Advanced Technology Engine
(ATEC) Development Program was to develop the technology which
would allow incorporation of the improvements referred to
above for free turbine engines in the 2- to 5-1b/sec airflow
class beginning their formal development cycle in 1975.

Breadboard and prototype hardware for a complete system was
fabricated and tested. The system developed includes a fluid
controller module, an electronic computer module, and an IGV
actuator module.

The fluid controller module schedules fuel flow in proportion
to an electric signal from the computer. The fluid controller
incorporates an electric stepper motor-positioned metering
valve with feedback resolver, a throttling pressure regulator,
an integrated 37,500-rpm pump, and a backup manual fuel
metering controller.

The electrohydromechanical IGV actuator incorporates an elec-
tric stepper motor-controlled hydraulic servovalve, a feed-
back resolver, and integral mechanical backup control. The
backup control schedules actuator position as a function of a
speed pressure signal from the centrifugal pump. This pro-
vides coarse automatic IGV control in the event of an elec-
tronic failure. '

The electronic computer module provides all of the computa-
tional and logic functions. Two prototype electronic packages
with built-in fuel cooling plate were fabricated for compre-
hensive environmental testing, and two complete breadboard
systems were made for use in developing circuit designs and
for closed-loop system testing. A radiation pyrometer was
fabricated and tested, and all the other required sensors
were selected and test evaluated.

In January 1971, the program was modified to include the dem-
onstration and evaluation of a regulated alternator as part of
the ATEC. A demonstration unit was designed, fabricated, and
tested. A design study showed that packaging the alternator
in the fluid controller was the best mounting location. How-
ever, it was not possible to integrate the alternate hardware
with the control package as a part of the current program.



The ATEC system will complement the technology advances being
made in the 2- to 5-1b/sec airflow class of engines. It was
desired to maximize the advancement in the state of the art
of the engine control system and its component parts in the
following areas:

l.

10.

11.

12.

Increased flexibility and interchangeability of com-
ponents for turboshaft engines in the 2- to 5-1b/sec
class.

Elimination of the requirements for mechanical drive
input to the control or provide capability for driving
control and associated components at 50% of engine
speed.

Improved vulnerability resistance features.

Decreased contamination sensitivity.

Increased ability to accommodate various grades of
fuel without adjustment.

More efficient packaging, allowing integration with an
advanced lightweight accessory package.

Increased system reliability and decreased frequency
of maintenance.

Advanced maintainability features, including quick
installation and removal.

Provisions for engine analyzexr inputs using inherent
features of the control.

Lower unit cost potential.
Design life of 5,000 hours or more.

Minimum size and weight.



DISCUSSION

The original program to develop and evaluate the coinponents
and system concepts was divided into the following six areas
of effort:

System

Geometry Actuator

Fluid Controller

Simulation and Control Mode

Sensors .
Electronic Computer

o d W -
.

The overall 30-month program was broken into three phases:

Phase I - Design - 14 months
Phase II - Fabrication - 7 months
Phase III - Test - 9 months

Figures 1 and 2 are program task charts which describe the
tasks under each of the six work areas for each phase of the
prcgram. Figure 3 summarizes the activity and time used for
each work area and also indicates the program milestones.

This shows that the program overran by two months, which was
caused by a delay during the system test phase due to problems
with the pump drive gearbox.

The addition of the regulated alternator to the program added
a seventh area of effort. The work tasks and time spent on
this effort is shown in Figure 4.

The development and accomplishments in the seven areas of
effort are discussed in the following section.
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MILESTONE FORECAST AND 156D o ST 973

ACCOMPLI!SHMENT CHART

SONDJFMAMIJASONDIFMAMY
: R N B .

A,

SYSTEM

Establish Specs and Evaluation Criteria
Evaluate Basehine System

Integrate and Optimize B/L Design
Coordinate System Assembly and Test
Bench Test System

Final System Evaluation

1

JASOND

“ o

1
|

JFM
AL

A M

GEOMETRY ACTUATOR

Design Study

Breadboard Critical Areas
Evaluate and Setect B/L Design
Detail Design

Fabrication and Assembly
Development Test

Endurance and Enviranmental Test
Final Evaluation

FLUID CONTROLLER

Design Study “A’’ Design

Design Study "B Design
Breadboard and Test Criticat Areas
Evaluate and Select B/L Design
Detail Design

Fabrication and Assembly
Development Test

Endurance and Environmental Test
Final Evaluation

SIMULATION AND CONTROL MODE
Establish B/L and Alternate Engine Specs.
Establish Engine and Control Simulation
Control Mode Study and Selection
Demonstrate Performance with B/L Engine
Demonstrate Performance with Alt Engine
Establish Engine Simutator and Interfaces
Estabiish Test and Data Plans

Swmnulator Testing with 8/L Engine
Simulator Testing with Alt Engine

Final Evaluation

SENSORS

Sensor Evaluation Study

Blade Temperature Analysis

Test and Evaluate Optical Pyrometer
Test and Evaluate Selected Sensors
Cantigu:-e Pyrometer Installation
Estabhsh Sensor Test Fixtures
Conduct Sensor Environmental Test
Candur:t Engine Condition Tests
Final Evaluation

ELECTRONIC COMPUTER

Basic Design and Specifications
Evaluate Packaging Concepts
Evatuate Cooling Concepts
Evaluate Breadboard Circuits
Define Baseline Computer Design
Failure Mode Analysis

Computer Package Design

Circuit Netail Design

Fabricate Breadboard Computer
Develop Breadboard Computer
Fabricate Demonstrator Computer
Deveiop Demonstrator Computer
Endurance and Environmental Test
Finat Evaluation

DATA REQUIREMENTS

Monthily Reports

Semi Annual Summary Report

Final Dratt Report

Baseline Engine Control Specification

Figure 3, Program Schedule and Milestone Chart.
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SYSTEM

The control system design goals, performance specifications,
and requirements for the final design evaluation evolved from
previous control system specifications, detailed discussions
with USAAMRDL, and surveys of cognizant engine, airframe and
Army personnel. These surveys helped to resolve questions on
specific areas of the specifications which required more
definition and/or expert judgment. The control system re-
quirements were specified for an advanced free turbine engine
in the 2- to 5-1b/sec airflow class for a twin-engine helicop-
ter. This application was judged to impose the most demanding
control system requirements for a free turbine engine instal-
lation.

Design Goals & Achievements

The design goals established for this program are tabulated
in Table I and were directed toward:

l. Eliminating those problem areas and shortcomings
experienced with current hydromechanical controls.

2. Developing the new sensors and technologies required
for control of small advanced free turbine engines.

3. Having the advanced control technology ready for
engine development commencing in 1975,

It is impossible to fully assess the achievements made toward
all these goals because some of them can. be determined only
after years of operating experience. However, significant
progress was made, and Table I includes a summary of what are
felt to be salient achievements made toward the goals estab-
lished for each item.

System Design Specification

During the design phase of the program, a detailed control
system specification was prepared covering performance, de-
sign, and environmental requirements. This was updated peri-
odically based on the results of our control mode studies and
information garnered from the surveys. The actual flow sched-
ules, gains, and dynamic requirements were established from

9
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control mode studies on a 2-1lb/sec and 5-1b/sec engine and in
appropriate size helicopter rotor system. A summary of the
baseline control system specification is given in Table II.

System Description

An overview of the engine/control system is shown in Figure 5.
This figure describes the engine configuration, control inputs
and sensed parameters, and the interconnections within the
control components and the engine. Figure 6 shows a system
component diagram which describes the various sensors, control
components, input/output signals, and all of the interfaces.

As indicated by Figure 6, the electronic control system is
engine mounted, fuel cooled, and self powered. The control
system has an integrated fuel pump, a remote inlet guide vane
actuator, and a redundant power turbine overspeed governor;:
it also provides for manual control of fuel metering.

The torque sensors are not included in the hardware develop-
ment program because they are inherently an integral part of
the engine. For purposes of demonstrating the performance of
the control, a frequency signal proportional to torque was
generated. Also, only one geometry actuator (IGV) was devel-
oped, whereas most advanced engines will require an inter-
stage bleed valve and IGV actuator. It was decided that de-
veloping one actuator was sufficient to demonstrate the tech-
nology.

A functional description of the control system is shown in
Figure 7.

Control System Envelope

Two separate packaging design studies were made, one with an
integrated alternator and one without. The two configurations
are shown in Figures 8 and 9. Figure 9 shows the design with
the alternator.

The addition of the alternator is reflected in the size of the
fuel controller package. The packaging study showed that a
net savings of between 0.5 and 1.0 1b results from integrating
the alternator as opposed to it being in a separate package.
This savings did not include the weight of mounting and driv-
ing the alternator as a separate package. The alternator in-
creases the control weight by about 2.5 1b.

11



TABLE II.

Turbine Blade Temperature Limitang¥*

W’F/Pt3 Start, Acceleration & Deceleration

Isochronous Power Turbine Governing
Proportional Gas Prcducer Governing
Semiautomatic Start**

Twin-Engine Load Sharing

Torque Limiting*

Engine Malfunction Protection
(Twin Installation)

Variable Compressor Geometry Scheduling
£(NVB)

Load Anticipation

Proportional Power Turbine Overspeed
Protection

Manual Emergency System

Ground & Flight Idle and
Military Speed Set

Fuel Inlet Temperature
Ambient Temperature

Vibration and Fuel Contamination

BASELINE CONTROI, SPECIFICATION SUMMARY

(TWIN-ENGINE HEL ICOPTER APPLICATION!

+30°F
+2pph, *4%, +7.5%
+.25%

+1%

Wf = £ (PLA)
+5% Torque

115% +5%

Pilot Indication

*+1.5%
Collective Pitch
.05 Sec Response

Pilot Actuated

Independently
Adjustable

-65° to 135°F
-65° to 250°F

MIL-E-5007C

*pilot can reset to higher limits for emergency PLA setting.

**pilot initiates fuel flow on moving PLA to ground idle

setting.
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SENSORS/ INTERFACE

- -
INPUTS
Mer
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0o
B

ELECTRONIC COMPUTER

1

t

ALTER-
NATOR

PUMP

FLUID
CONTROLLER

FLUIDIC
OVERSPEED
GOVERNOR
°V'
i
[ IGNI1TORS
16¥ & STARTER N
ACTUATOR ft
-
- [
"'T\"'ﬁ 2P Tus
L]
i
b
ENGINE PARAMETERS
Figure 5. Engine Control System,
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| I6V BARRIER FILTER
- TO I6V PORT

| —Px BARRIER FILTER 7’

WASH ;
- | aLecTRONIC

FLOW FILTER- f aecrron

RED INDICATOR-
ENGINE CONNECTOR”

ELECTRONIC COMPUTER
HEAT EXCHANGER
AREA \
BARRIER
FILTER

P43 CONNECTOR

FUEL INLET - ‘&3"5'
C D VALVE—

“—FIBER OPTICS
CONNECTOR

METERING HEAD REG.
FUEL DENSITY ADJ

GO IOLE~ -

~ o
2 r  FLULIOLE -
VEL OUTLET o imae FUEL OUTLET

S—————
TRIMMERS

MIN FLOW STOP
ADJUSTMENT

FUEL OUTLET

Y

POWER TURBINE
OVERSPEED GgV.

Figure 8. Installation Package Without Alternator.
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¢

IGY 8 Px BARRIER FILTERS 'r’—'—"" . |

- FUEL OUT OF HEAT
FUEL INTD MEAT EXCHANGER
EXCHAMGER

BARRIER FILTER

JMILITARY

TRIMMERS
HEAT EXCHANGER
AREA

PLA LINKAGE L PR
1 FUEL DENSITY ADJ
5.25

MIN FLOW AREA

FUEL OUTLET

POWER rURE/AE/
OVERSPEED GOV

Figure 9. Installation Package With Alternator,
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Control System Features

A mock-up showing the three field replaceable modules of the
control system is shown in Figure 10. The fluid controller,
electronic computer and geometry actuator are completely
interchangeable, and no calibration is required for replace-
ment of one unit. The combined weight of the three modules
is 12.5 1b without the alternator and 15 lb with the alter-
nator. The main features of each control module are outlined
below.

Fuel Controller Module

Fuel Pump, Fuel Metering and Fuel Shutoff
Manual Fuel Flow Control
Alternator for Control and Ignition Power

Electronic Computer Module

Hybrid Electronic Computer
Turbine Blade Temperature Sensor
P{3 Sensor

Cooling Plate (Fuel Cooled)

Geometry Actuator Module

Electrohydromechanical Actuator
Backup Control During Manual Operation

Special Features

System Weight 15 1b
Pump/Alternator Drive Speed 37,500 rpm
Operates on Contaminated Fuel MIL-2-5007C Dirt
Electronically Programmable

3-D Cam

Closed-Loop Turbine Blade
Temperature Limiter

System Error Analyses

There are many potential error sources within a relatively
conplex system. In general, system error is caused by dynamic
lags, disturbances, manufacturing tolerances, wear, and varia-
tion due to environmental changes, etc. Although error

18
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prediction is more of an art than a science, certain error
predicting techniques are recognized as offering relatively
reliable trends and are a useful design tool. The error
analysis method used in this study is the root square sum
(RSS) error budget method. Based on the RSS estimate of the
contribution of each error source to the overall allowable
error for each control mode, a decision can be made as to
whether these errors are tolerable. FError budgeting then
allows a redistribution of the allowable control mode error to
ease the accuracy specifications on system components which
may have difficulty meeting requirements and tighten accuracy
requirements where indications are that system components ex-
ceed requirements.

Error Model

Figure 11 is a block diagram of the engine and control
error model. The effect of any error source injected into
the system can be determined in terms of the resulting
steady-state control mode error for each of the control
modes.

Error Allocations

At the start of the program, a preliminary system error
analysis was conducted based on the RSS method. As a
first estimate, each component contributing error to a
particular control mode was allowed an equal share of the
total allowable control mode error E. If there were m
components contributing error then the allowable compo-
nent error would be * E//H.

The allowable error for each component was compared with
its estimated design error, and thereby an assessment of
the adequacy of the component's performance was determined.
For example, in this study the N, speed sensor had an
estimated design error of + .1% Speed and an allowable
error of + 0.33% for the starting control mode. This
indicated that for this particular control mode the
accuracy of the speed sensor was substantially better than
the RSS error specified. More of the allowable error for
this control mode could therefore be budgeted to other
conmponents.

20
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Certain deficiencies in the preliminary design were
evident when the RSS errors based on estimated design
were compared with the allowable errors, As a result of
the preliminary analysis, errors were redistributed.

The results of this study establish accuracy requirements
for the components in the control system., Table III
summarizes the results of the error analysis studies for
all of the control modes at worst-case operating conditions

System Performance

To demonstrate system design and performance compliance with
specifications, three separate phases of testing were conducted
as outlined below.

l. Open-loop steady-state and frequency response dynamic
tests,

2. Closed-loop performance tests using an analog computer
engine simulator.

3. Environmental/endurance qualification tests,

The results of this test evaluation program establish that the
steady-state and dynamic performance of the control system has
satisfactorily met the srecified requirements. There were no
system functional or dynamic problems uncovered, In addition
to these system performance tests, separate performance and
environmental tests were conducted on each of the control
modules. The results of the component testing are included in
the corresponding sections of this report.,

Open Loop System Testing

Open loop steady state and dynamic tests were conducted

to ensure that all of the flow schedules, control gains,
and system dynamic performance were within specified
requirements, These tests demonstrated the accuracy of
the electronic computer and hydro-mechanical fluid con-
troller metering system. The test results showed that the
control performance at room temperature over simulated

22
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gas turbine inlet temperatures covering the specified
envelope from -65°F to 135°F, from idle to emergency
power, was in compliance with the specified accuracy.

The dynamic requirements of the system were also shown
from frequency and transient response tests to be within
the specified requirements. Each closed-loop control mode
was designed for 6 db gain margin and 45° phase margin.

Closed-Loop Testing

Closed-loop tests were conducted using an analog computer
simulation for the engines. Figure 12 is a block diagram
description of the test layout, showing the interconnec-
tions between the fuel controller on the test stand and
the breadboard electronic computer and analog engine simu-
lator located in the computer lab about 50 ft away.
Figures 13 and 14 are photographs of the setup in the com-
puter lab. Figure 15 shows a photograph of the test stand
setup. A complete evaluation of each control loop for
both the 5-1b/sec baseline engine and 2-1b/sec alternate
engine was made. The alternate engine required changes in
gain and flow schedule, which were made using the same
control hardware.

A brief summary of the results of the closzd-ioop test
demonstration is outlined below.

1. Acceleration and Deceleration

The transient performance requirement to acceler-
ate the engine from idle to maximum power within

3 seconds was satisfied. However, the accelera-
tion time is inherently an engine capability
established by excess fuel flow surge and maximum
temperature limits. Similarly, the deceleration
capability of the system is dependent on the blow-
out limits. For both acceleration and decelera-
tion, the control system does not impede perform-
ance.

2. Power Turbine Governor
Power turbine speed error transients were held to

within the specified 3% limit. This required
collective pitch reset of the gas generator

24
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-

PRECISION PRESSURE
REGULATOR

Figure 14,

Gas Turbine Engine Sensor Simulators.
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governor. Transient power turbine speed errors

of up to 12% were limited to 2% with the governor
reset. Figures l¢ and 17 summarize the transient
performance capability of the power turbine gover-
nor control. These traces show the performance

of the baseline engine and control system during
gross changes in collective pitch for simulated
sea level and 25,000 ft conditions. Similar
results were obtained with the alteinate engine.

Blade Temperature Limiter

Closed-loop turbine blade temperature limiting
was demonstrated using the blade temperature
simulator shown in Figure 18. The turbine blade
temperature from the engine simulator (voltage
signal) has been rescaled and the voltage used

to drive a tungsten filament lamp. The scaling
has been arranged to give the same radiation
pyrometer output current vs temperatui'e charac-
teristics obtained from heated strip calibrations.
In this way, the radiation detector will sense the
same radiant energy expected from a turbine blade
at that particular temperature. The dynamics
have been represented by interrupting the radia-
tion with a chopper disc fitted to a high speed
air motor which simuiz.~3 the rotating turtine
blades.

Figure 19 shows a typical blade temperature trace
during a transient to emergency power with and
without the blade temperature limiting. The
results indicate that the limiter prevents an
overtemperature of about 200°F based on an 1800°F
limit. The uncompensated thermal lag in the blade
does not affect the performance since it is the
blade temperature that is being limited.

Torque Limiting

The transient performance of the torque limiting
loop is shown in Figqure 20 . These results simu-
late an acceleration from idle to high power
pulling a load of 80% collective pitch.
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The results indicate that torque is limited to
within the specified 115 + 5%.

5. Load Sharing

To demonstrate load sharing, a second analog
computer engine was simulated using a simple
linear model of the baseline engine, The
transient dynamics of this second engine were
established to be sufficiently different from
the primary engine simulator to ensure that
large splits would occur without load sharing
control.

Figure 21 shows transient load splits with and
without load sharing control. The results indi-
cate the significant improvement in load sharing
with the control. However, during large transients
wherein both engines would be on the acceleration
control, the system would n .t be responsive to

load mismatches. The load-sharing control operates
by increasing the torque on the low output engine,
If that engine is already at the acceleration

limit then it cannot respond. It is undesirable

to provide load-sharing control by decreasing the
high output engine because this would slow down
acceleration time. Also, resetting the low power
engine has undesirable failure modes. For example,
if one engine is lost the load-sharing controi

will decrease the power of the remaining engine.

Environmental and Endurance Tests

The Demonstrator II computer and the fluid controller package
was assembled, and environmental and endurance testing on the
complete system was conducted. A diagram of the test setup
is shown in Figure 22,

The initial environmental test consisted of 3 "Hot Day Mission
Profiles", as described in Table IV. This 3-hour test cycle
is mz2ant to represent a mission profile resulting in the worst
case operating conditions for the electronic computer and fuel
pump due to fuel temperature rise,
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The system was then set up for automated testing and data ac-
quisition, which was conducted by the Hewlett Packard Data
Acquisition System, shown in Figure 23.

The environmental/endurance testing consisted of:

1. 50 hours at 121°C ambient and 57°C fuel

2. 20 hours at -54°C ambieni and fuel

3. 18 hours of contamination testing per MIL-E-5007C Spec.
4, 30 hours at room tempe -ature

The environmental/endurance test cycle is shown in Figure 24.
Each cycle takes 18 minutes to complete.

The data acquisition system cycles the fuel flow, according to
Figure 24, by varying the pump speed and changing the input
parameters to the demonstrator computer. The voltage controlled
oscillator is used to convert the dc level supplied by thc

data acquisition system into a frequency signal. Besides cyc-
ling the fuel flow, the acquisition system also records the
i)llowing data at each fuel flow level:

Fluid Controller, Pump, & IGV Paraneters

1. Automatic-to-Manual Changeover Pressure
.  Inducer Outlet Pressure

. Centrifugal Pump Outlet Pressure

. Gear Pump Outlet Pressure

. Metering Valve Pressure Drop

. Pump Changeover Valve Pressure

. High~Speed Gearbox Temperature

. Control Outlet Fuel Temperature

9. Pump Drive Speed

10. Pressure Inlet to Pump

11. Fuel Inlet Temperature to Pump

12. Pressure Outlet from Fluid Controller
13. Geometry Actuator Position

N b WN

Thermistor locations in the demonstrator package

1. MMV Stepper Motor Driver

2. VCO

3. Multi-Layer Board Binary Rate Multiplier (BRM)
4, Function Generator ROM
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Hewlett Packard Data
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Power Supply +5V Regulator Power

Power Supply Diode Located on Cold Plate
Inlet Fuel to Cold plate

Outlet Fuel from Cold Pplate

Cover

Mounting Pad on cold plate

O WO~ WL
.

1

Other signals from Demonstrator Package
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Figure 25 shows the Dynamometer Room where the + 28 volt
power supplies and the VCO were housed.

Hot Day Mission Profile

The Hot Day Mission schedule is described in Table IV,

In accordance with this schedule the system was soaked at
+71°C for 50 minutes. After the high temperature soak, the
input parameters were manually changed to obtain the coxrect
output fuel flows. The complete mission was run 3 times,

Figure 26 shows the approximate location of 10 thermistors
which were bonded tc the demonstrator package., Ti.e temp-
erature data measured by the thermistors describes the
temperature profile of the electrorics as a function of
the fuel flow and ambient temperature.
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The temperature data obtained from these tests are tabulated
in Table V. The data indicate that as fuel flow drops,

the temperature rise across the cold plate increases., When
fuel flow was 100 pph the temperature drop, FO-FI, was 5°C
and increased to 9°C when the fuel flow decreased to 60 pph.
Furthermore, when the fuel flow increased to 370 pph the
temperature drop decreased to 1°C, The temperatures inside
the demonstrator package also showed a rise when fuel flow
decreases, At low fuel flows all the thermistors indicated
a rise in temperature,

The Hot Day Mission Profile presents the worst possible
operating conditions due to heat rise caused by low fuel
flows, high ambient temperatures (121°C), and high fuel
inlet temperature (57°C), The coolant fluid maintained
the temperature inside the computer below 100°C even under
worst-case operating conditions. This test demonstrated
the operation of the cooling system and the control system
under worst-case conditions.,

Endurance Testing

The primary purpose of the endurance test was to establish
the capability of the control to survive repeated cycling
through several operating modes at standard, hot (121°C),
and cold (-54°C) day conditions and with contaminated fuel,
Evaluation of the control following these tests showed no
degradation in performance, evidence of excessive wear, or
component part failures,

The endurance test results were used to measure the repeat-
ability of the control at each control mode and operating
condition, The repeatability was measured by computing
the sigma of the fuel flow distribution about its mean
value for each mode and operating conditicn., The sigma
value is identical to the RMS error in repeatability since
an ideally repeatable control would have zero sigma dis-
tribution; i.e., the same fuel flow would be recorded
during each cycle for a given control mode and operating
condition, A high sigma value therefore indicates poor
repeatability,

The computed mean fuel flow and RMS error for each cycle

point and operating condition are listed in Table VI.
These values were computed using all of the data obtained
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- Gk
TABLE VI. ENDURANCE TEST DATA
(All Data Points)
Mean RMS RMS
Cycle Flow Error RMS Error Error Operating
Point (pph) (pph) (% of Reading) (% FS) Conditions
1 46.4 2.5 5.4 0.6 Room temp.
2 96.4 7.3 7.6 1.8
3 203.6 10.2 5.0 2.5 40 hours
4 135.2 14.4 10.7 345 cycle time
5 358.6 2.8 0.8 0.7 161 samples
6 210.5 10.8 5.1 2.6
7 357.1 3.1 0.9 0.8
8 190.0 8.8 4.6 2.1
9 362.5 5.4 1.5 1.3
1 68.8 11.6 16.8 2.8 121°C ambient
2 86.1 4.1 4.8 1.0 temp.
3 220.9 14.3 6.5 3.5 50 hours
4 163.6 21.6 13.2 5.3 cycle time
5 332.7 6.2 1.9 1.5
6 210.2 24.7 11.8 6.0 167 samples
7 333.7 7.4 2.2 1.8
8 185.0 4.2 2.3 1.0
9 334.0 8.1 2.4 2.0
1 68.9 4.7 6.8 1.1 -54°C ambient
2 76.7 4.0 5.2 1.0 temp.
3 202.1 11.0 5.4 2.7
4 177.7 4.3 2.4 1.0 20 hours
5 302.3 9.9 3.3 2.4 cycle time
6 202.0 25.8 12.8 6.3
7 313.8 13.4 4.3 31,3 43 samples
8 188.1 10.5 5.6 2.6
9 295.7 16.3 5.5 4.0
0 287.5 30.4 10.6 7.4 18 hours of
contamination
test
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for each operating condition. Table VI also includes the
mean fuel flow and RMS error computed from the data ob-
tained during 18 hours of contamination testing. Contami-
nation testing is identified as cycle point "O" since the
control was not automatically cycled. During this test,
the control was left at the set point while supplied with
contaminated fuel.

1.

Room and Hot Day Test Results

The RMS errors computed from the complete test data
are significantly higher than what should be expected
from a properly performing control. A review of the
test conditions indicated that these large errors are
primarily due to improper test conditions. The large
repeatability errors for room temperature and 121°C
ambient result from electrical noise pickup in the
test setup. Electrical noise filtering was provided
about half way through the hot test. This signifi-
cantly reduced RMS noise level in the test setup and
thereby improved repeatability. Table VII compares
the RMS errors computed from data obtained during the
first 10 hours of testing at 121°C ambient (before
noise filtering was provided), with RMS error values
computed from data obtained during the last 10 hours
of the hot test. The RMS error in repeatability is
less than 2% of full scale during the last 10 noise-
free hours, while the repeatability error during the
first 10 hours is almost twice as large (3.9% of full
scale).

Cold Day Endurance Test Results

After the control had completed the cold day test, the
barrier filter was inspected and found to have been
clogged. The clogging was caused by ice due to exces-
sive amounts of water in the fuel. The filter element
used has completed 400 hours testing at -54°C with
similar flow conditions in another application.

Table VII gives data for the first 14 hours of testing
before the filter clogged and shows that for the same
test conditions the deviation is reduced from 12.8%
of point to 1.6% of point.
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TABLE VII. ENDURANCE TEST DATA
(Selected Data)

Mean RMS RMS
Cycle Flow Error RMS Error Error Operating
Point (pph) (pph) (% of Reading) (% FS) Conditions

1 48.3 l.6 3.3 0.4 121°C ambient

2 9l.8 4.3 4.7 1.0 temp.

3 196.4 8.2 4.2 2.0

4 127.2 13.6 10.7 3.3

5 340.1 8.5 2.5 2.1 First 10 hours

6 248.6 16.0 6.4 3.9

7 337.1 8.5 2.5 2.1 40 samples

8 181.4 6.2 3.4 1:%15

9 344.7 10.4 3.0 2.5

1 74.9 0.9 1.2 0.2 121°C ambient

2 84.1 1.3 1.5 0.3 temp.

3 228.4 0.6 0.3 0.1

4 174.5 1.1 0.6 0.3

5 329.2 1.5 0.5 0.4 Last 10 hours

6 199.0 1.6 0.8 0.4

7 332.7 7.7 2.3 1.9 43 samples

8 186.5 1.6 0.9 0.4

9 329.8 1.8 0.5 0.4

1 70.1 1.8 2.6 0.4 -54°C ambient

2 77.0 1.6 2.1 0.4 temp.

3 208.8 2.0 1.0 0.5

4 175.7 2.9 1.6 0.7 First 14 hours

5 306.0 5.3 1.7 1.3

6 202.9 3.3 l.6 0.8 30 samples

7 312.7 7.9 2.5 1.9

8 182.2 5.2 2.8 1.3

9 303.5 3.5 1.2 0.9

0 302.5 2.6 0.85 0.6 First 5 hours
contamination
test
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3. Contamination Testing

Eighteen hours of contamination testing were com-
pleted. During approximately the last 8 hours of
this test the centrifugal pump was in cavitation.
Table VII gives test results for the first 5 hours of
testing and the results indicate a RMS error of 2.6%
compared to the 10.6% error computed from the total
18 hours of testing. The problems which occurred
were:

a) Worn gear pump journal bearings which induced a
high flow through the barrier filter, causing the
filter to clog.

b) The heat exchanger bypass valve clogged with con-
tamination after 12 hours running; this caused
the centrifugal pump to cavitate.

The wear in the pump bearing can be rectified by pro-
viding a better distribution of clean wash flow lub-
rication. The heat exchanger bypass valve has insuf-
ficient valve stroke; this can be remedied by a simple
design change.

Examination of the components after the contamination
testing showed that the main components of the system,
the centrifugal impeller, the metering head regulator,
and the fuel metering valve had excellent contamina-
tion resistance. Also, with the barrier filter and
heat exchange bypass valve in operation, the control
has the ability to accurately control contaminated
fuel.

Summary of System Evaluation

A comprehensive performance and endurance test evaluation of
the control system has proven design and performance compli-
ance. No major problem areas were uncovered. Those design
faults which were identified can easily be corrected through
minor changes in hardware design.
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GEOMETRY ACTUATOR

A geometry actuator will be required on advanced gas turbine
engines for positioning compressor stator vanes and/or operat-
ing bleed valves. The objective of this program was to develop
the best actuation system for these advanced engine require-
ments. Positioning the stator vanes was determined to be more
demanding than the operation of bleed valves in terms of accu-
racy and performance. The actuator was therefcre designed spe-
cifically for the stator vane requirement. 1I% is possible,
however, that this same actuator could serve a dual purpose,
i.e., operate both bleed valves and stator vanes from one out-
put shaft.

The detailed requirements for the actuator were obtained from
a thorough survey of the major engine manufacturers and are
summarized below.

Design Requirements

1. 1In consideration of pneumatic systems, engine manufac-
turers are reluctant to allow steady-state air leakage
from the compressor in excess of 0.1%.

2. Either compressor pressure ratio or corrected speed is
an acceptable means for scheduling the guide vanes.

3. With a rotary actuator, 30 to 35 degrees of angular
output is required.

4. The actuator must operate satisfactorily with maximum
output stiction loads of 50 to 100 in./lb.

5. The actuator must maintain a scheduled accuracy of
+ 1/2 degree during steady-state and transient opera-
tion. A transient accuracy of * 1 degree will prob-
ably be acceptable.

6. In the event of an electrical failure, the actuator
system must continue to control the guide vanes so
that the engine can operate over its full speed range.
Starting under this failed condition is also a require-
" ment.

7. Although not a specific requirement, a fuel pressure

powered system is favored. Contamination, torque re-
quirements, and high temperatures are thought to be
serious drawbacks for a pneumatic system.
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Selected Design

Six different systems were investigated. Two of the systems
used pneumatic computation for scheduling and actuation and
were completely independent of the fuel control system. The
other systems used electronic computation for scheduling and
considered pneumatic, electric, or hydraulic power for actu-
ation. A summary of the trade-off study conducted on these
systems is given in Table VIII. To meet the design require-
ments outlined above within a reasonable size and weight, the
electrohydraulic actuator using high pressure fuel for actu-
ation power and electronic computation for corrected speed
scheduling was determined to be the best system.

A schematic of the geometry actuator is shown in Figure 27,

and its operation is described as follows: The input from the
electronic computer drives the stepper motor which, through the
operation of the ballscrew, translates the 3-way control valve.
The valve controls Py pressure and thereby forces the piston

to follow the position of the control valve. The piston motion

STEPPER MOTOR

3-WAY VALVE
MINIMUM STOP

\— DIFFERENTIAL AREA PISTON

Figure 27. Geometry Actuator Schematic.
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is converted to a rotary output by a crank mechanism. The out-
put position is sensed by a resolver and fed back to the elec-
tronic computer. The feedback signal is compared to the refer-
ence signal and the error drives the stepper motor. The system
thereby operates as a closed-loop position feedback servomech-
anism. The reference signal generated in the computer corre-
sponds to the desired actuator position as specified by the
corrected speed schedule.

In the event of an electrical failure, or if power is lost or
switched off for manual fuel control, a built-in backup control
operates through an internal force feedback system and sched-
ules actuator position as a function of pump pressure rise.

The fuel pressure source (PA-PX) is supplied by the fluid con-
troller centrifugal pump. This pressure rise is a function of
the pump speed and therefore is an indication of engine speed.
The pressure rise is sensed by the 3-way control valve. Oppos-
ing the force which this pressure creates on the valve is a
feedback spring located within the ballscrew. The force of the
feedback spring is directly groportional to actuator position.
Summing these two forces at the valve provides an actuator
position schedule as .a function of speed. During normal oper-
ation, the electronic position feedback system overrides this
hydromechanical backup schedule.

To ensure that the actuator is in the correct position for
engine starting, a spring is used to force the piston to the
IGV closed position.

Figure 28 is a photograph of the geometry actuator hardware
disassembled. The piston and housing are aluminum and the
running surfaces are Martin-hardcoated to resist wear. The
control valve and sleeve are AMS 5630. The output shaft, which
is supported by two ball bearings, is manufactured from AMS
5620. The feedback resolver (not shown) and stepper motor are
purchased items. The weight of the actuator is estimated to

be 1.5 1b in flight hardware.

Shaft Seal Tests

As a part of the actuator program, rotary shaft seals were
evaluated. No dynamic elastomeric seal is available that will
survive the fuel temperature range (-65°F to +300°F) and abra-
sion for the life required of the shaft seals in this control
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system. Power lever seals as well as the geometry actuator
output shaft seal were considered.

Four types of Teflon seals were all cycled for equal periods at
hot (+300°F), cold (-65°F), and room temperature conditions for
a total of 150 hrs (54,000 cycles). Fuel pressure was varied
from 20 to 800 psi during the cycling. Two of the seals tested
proved to be effective for application in this advanced control
system. Neither seal exhibited measurable leakage or excessive
wear as a result of the cycling. One of these was a graphite-
filled Teflon seal supported by a flat wire spring. The other
was a virgin Teflon seal and used a fluorosilicone o'ring for
support. Both seals were installed in the housing as opposed
to being installed on the shaft. Similar seals installed on
the shaft failed during the testing.

Each of the successful seals was used in the development units.
The flat wire spring support seal was used in the geometry act-
uator and the fluorosilicone supported version in the fluid
controller. No problems were experienced with either seal.

Actuator Performance

The geometry actuator design schedule of guide vane position
vs corrected gas generator speed is shown in Figure 29. On the
same figure is X-Y Plotter data from closed-loop steady-state
testing; Figure 30 shows closed-loop transient test data. This
data was obtained using a torsional loading fixture which pro-
vides a frictional and aerodynamic load such as will be en-
countered on an engine. The maximum load was set at 70 in./lb.
The results indicate that the accuracy meets the * 1/2 degree
requirements. The transients test results indicate increased
hysteresis. This was determined to be caused by a loose test
fixture which supported the potentiometer used for sensing
output position in this test.

Figure 31 shows the fail-safe system design schedule along with
predicted limits of operation. Also plotted in this figure are
the high stress and stall region limits of the engine. As
shown, the fail-safe schedule will allow the engine to operate
over the full speed range withcut encountering high stress or
stall conditions. Test data on this system at room temperature
was within the limits shown in the figure, but hysteresis and
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repeatability errors were such that the actuator would not stay
within these limits over the entire operating envelope. This
condition was traced to the ballscrew. The ballscrew exhibits
a random tendency to jam at arbitrary positions under the re-
verse loadld it experiences in the backup mode. Increasing the
speed sufficiently would break the jam, allowing the system to
schedule properly.

The present ballscrew features an internal return mechanism for
transferring the balls from the end to the keginning of their
track. The jamming problem appears to be caused by this method
of return. An external return ballscrew would most likely
solve the problem.

Endurance Testing

During the hot day mission profile testing, the hot air nozzle
used to heat the environmental box was inadvertently lcocated
adjacent to the IGV stepper motor electrical drive cable. To
achieve an ambient temperature of +250°F in the environmental
box, the hot air nozzle inlet temperature had to be set at
500°F. The heat from the nozzle caused a short circuit in the
IGV cable which resulted in a failure in cthe IGV stepper motor
driver. Due to the extensiva testing still remaining to ke run
on the pump and fluid controller in the time left in the pro-
gram, the IGV stepper motor driver was not repaired. The IGV
actuator was operating in the backup mode for 80 hours during
the Hot and Room Temperature Endurance Cycling. Because of the
problem with the ballscrew, the actuator did not continually
cycle. However, not much was lost because a comprehensive en-
durance test had already been conducted on the shaft seals and
a new ballscrew design was required. Also, the stepper motor
and resolver were evaluated within the fluid controller.

The geometry actuator described herein satisfies the require-
ments established for the advanced generation of gas turbine
engines. A preliminary layout oY the production configuration
is shown in Figure 32. Further development on the ballscrew
is required to improve the performance of the backup system.
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FLUID CONTROLLER

The object of this program was to provide a control system
which could be applied to a wide range of engine sizes, and
also satisfy the requirements for reliability, maintainability,
small size, high contamination resistance, and low cost. Flex-
ibility can be achieved by providing electronic computat.ions
and sensing. The fluid controller then has to be capable of
providing a wide range of fuel flow and pressures with only
small modification to meet requirements for various engines.

With this objective in mind, three fluid control systems
evolved for evaluation. The main component in each system is
the pump; the other systems components, which are~ required to
control, are fundamental and of the same type hardware. The
three systems which were evaluated include:

1. A centrifugal pump and throttling type fuel metering
system as shown in Figure 33.

2. A variable displacement vane pump and pump control
system as shown in Figure 34.

3. A gear pump and by-pass type metering system as shown
in Figure 35.

Each of these systems was considered because it had advantages
in specific areas. The centrifugal pump system was expected
to have good contamination-resistance potential for very high
speed and it is relatively simple. The variable vane pump
system offers low fuel temperature ) ise and fewer system com-
ponents. The gear p'mp system was considered primarily because
it is the conventional concept. It has no known advantages in
contamination resistance or high speed.

The basis for comparison was mainly between the centrifugal
pump system and the variable displacement vane pump system,
knowing that if major problems were experienced, the gear pump
system could always be used.

Centrifugal Pump System (Figure 33)

A high speed (37,500 rpm) centrifugal pump is used to provide
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the pressure and flow to the engine for steady-state operation.
A tip sealed gear pump is provided for engine starting since a
centrifugal pump is not capable of priming itself. The block
used for sealing the tips of the gear pump is held in position
by pressure from a changeover valve. A pressure speed signal
from the centrifugal pump outlet actuates the changeover valve
so that at just below engine idling speed the gear pump tip
seal is unloaded and thereafter the system operates on the
centrifugal pump. This arrangement ensures maximum contami-
nation resistance of the pumping system since the gear pump ais
windmilling during normal operation.

Metering of fuel flow is accomplished by a rotating plate valve
and a throttling head regulator. The metering valve is rotated
by a stepping motor through a gear reduction. The stepping
motor receives commands from the electronic computer.

A manuval system is provided which connects the pilots input
directly to the metering valve. The connection is made by a
mechanical link when the changeover solenoid is de-energized.
Therefore, in the event of a power failure the system changes
automatically to the manual system.

vVariable Displacement Vane Pump System (Fiqure 34)

Engine flow and pressure is provided by a high-speed variable
displacement vane pump. For a given vane displacement, flow
is proportional to pump speed. The vane displacement is con-
trolled by rotation of a ring which forces the vanes into and
out of the rotor by cam surfaces. The rotation of the ring is
deternined by a force balanced electrohydraulic actuator which
is controlled by the electronic computer. Fuel mass flow is
fed back to the computer from a flow sensor in the outlet fuel
line.

A fairly sophisticated manual bhackup system is pro ‘ided which
provides closed-?o,op gas generator speed control. . oon de-
energizing the changeover solehoid, the pilots input is mech-
anically linked to the flapper servo linkage and compared to a
pressure speed signal from the impeller. The resulting force
error moves the flapper valve to control the pump displacement
and thereby provides proportional gas generator governing.

A nonlinear analog simulation of the variable displacement
vane pump system was done to optimize bellows sizes and lever
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ratios. Also it was necessary to analyze the effect of posi-
tive feedback produced through the pump speed loop with this
flow control mode.

Trade-Off Studies

Based on a design layout of each fuel control system, a trade-
off study was conducted. The resu.ts of this study are summa-
rized in Table IX. The main findings were that the centrifugal
pump system would weigh 29% less and be 37% lower in cost and
have the potential of a much higher pump speed. The cost and
weight difference is due mainly to the high machining time and
weight of the variable displacement vane pump. Based on these
results, it was decided to select the centrifugal pump system
as the baseline fluid controller.

Barstock Testing

After the decision had been made to use the centrifugal pump
system, all the fuvel-metering components involving a technical
risk were made in barstock form and tested.

These components were:
1. Main metering valve.

2. Metering head regulator.
3. Wash flow filter.

Main Metering Valve

A fixture was made to test the rotating plate valve concept.
Various combinations of valve material were tested. The
material which was best for weight and contamination resis-
tance was aluminum with the wear surfaces hard coated.

Test results showed that a rotating plate valve had very
good contamination resistance, was excellent for metering
low fuel flows, and cequired a low torque to drive it.

Metering Head Regqulator

A metering head regulator was tested which represented the
design required for the baseline control. The design in-
cluded damping flow force compensation and force amplifi-
cation by using a diaphragm. The test results are shown
in Figure 36, which shows the effect of redesigning for
flow force compensation. The drop in metering head with
incre~ssing fuel flow is acceptable because it can be com-
pensated for in the main metering valve contour.
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requires conventional
manufacturing tech-
nigues. All fluid
interconnections per-
mit dense package.

TABLE IX. COMFARISON OF FLUID CONTROLLER SYSTEMS
Parameter Centrifugal Variable Displacement
Pump System Vane Pump System
Simplicity More components, but Fewer components, but

requires sophisticated
manufacturing technigues.
Force balance servo sys-
tems create larger pack-
age.

Present-day
cost ratio

1.00

1.37

Present-day
weight ratio

1.00

1.29

Growth to
higher en-
gine speeds
(37,500

rpm current)

May be extended higher.

Limited by available
material combinations.

Overall pump
efficiency
(projected)

15%

40%

Fuel tem-
perature
rise

90°F at 450 pph and
850 psi.

28°F at 450 pph and 600
psi will permit greater
turndown at 100% speed.

Manual
system

Direct metering valve
coupling.

Incorporates a simple
closed-loop gas genera-
tor speed control sys-
tem.

General
remarks

Can be demonstrated
using present-day tech-
nology. Advances di-
rected toward improved
materials and packag-
ing for lower cost and
weight.

Requires development of
manufacturing techniques
and a control-mounted
fuel flow sensor to en-
sure a competitive posi-
tion.

-
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Wash Flow Filter

Many types of filter material and different geometric con-
figurations were evaluated in an attempt to develop a wash
flow filter for the baseline control. It was found, Low-
ever, that Sor a wash flow filter to operate effectively,
the through flow must be 3 or more times greater than the
filtered flow. Because of this limitation in operation,
it was not possible to use a wash flow filter. Therefore,
it was necessary to use a barrier filter for providing
clean flow to the pump bearings and metering head regulator
wash flow. The small amount of filter flow required re-
sults in a reasonably small barrier filter.

Baseline System

The baseline system resulted from in-house design studies and
suggestions made by a survey of Army, airframe and engine mar..-
facturers' requirements. The findings affecting the fluid con-
troller design philosophy included:

It is required that the pilots input be mechanical since for
an electronic control it is necessary to provide a positive
mechanical fuel shutoff.

A mechanical .anual system is required, and it is preferable
that in the event of an electrical failure the control should
automatically change smoothly to the manual system.

To protect against destructive turbine overspeed due to a
sheared load shaft, an independent proportional power turbine

overspeed governor 1is required.

System Description

A schematic of the baseline fluid controller is shown in
Figure 37.

Fuel enters the control, and passes through a conical inducer.
From the inducer the flow then splits, with a small amount of
flow being diverted through a heat exchanger for cooling the
electronic computer, the remaining flowv passes through a check
valve to a single-stage centrifugal impeller. The check valve
maintains a constant flow through the heat exchanger. The
centrifugal impeller was sized to suit a high-pressure burner
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system (850 psi at 37,500 rpm) since a low-pressure system is
easier to achieve from packaging and fuel temperature consid-
erations.

The fuel then enters a tip-sealed gear pump, which during nor-
mal engine operation (idling to maximum) has the tip loading
block withdrawn so that the gears windmill. This allows the
pump to have maximum contamination resistance. For starting,
the tip loading block is held on the gears by fuel pressure
which is controlled by the pump changeover valve. The change-
over valve is actuated by outlet pressure from the centrifugal
pump. It is arranged that the chingeover from the gear pump to
the centrifugal pump takes place below engine idling speed so
that there is no discontinuity in pressure or flow during nor-
mal engine operation. During engine starting, fuel flow in ex-
cess of engine demand is by-passed to the gear pump inlet by a
start-up by-pass valve.

Fuel mass flow is controlled by a rotating plate metering valve
in conjunction with a throttling head regulator. A feature of
using a throttling head regqulator is that variation in prescure
drop with fuel flow can be compensated for with the metering
valve area. The lowest practical metering valve pressure drop
was used to maximize the metering valve area. This allows
maximum contamination resistance. The metering head is manu-
ally adjustable for fuel type and is compensated for fuel tem-
perature. The area sensing the metering head was determined
by considering steady-state accuracy, transient response, and
contamination requirements.

The rotating plate type of metering valve provides good contam-
ination resistance and can be made to have negligible leakage.
This was demonstrated during barstock testing. The metering
valve is driven through a gear reduction of 122/1 from a step-
ping motor; this is required to give the necessary resolution
and torque amplification. The metering valve area is exponen-
tial for most of the flow rang=; this allows constant flow
sensitivity or constant percentage of point change in fuel flow
for one step of the stepping motor. To allow good transient
response and accurate governing, the stepping motor is driven
in 15° steps for transients and 7.5° steps for governing.

Fuel flow feedback to the computer is provided by a resolver
aiving metering valve position.

A manual system is provided by a mechanical link between the
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pilot's input and the metering valve. A solenoid controls the
fuel pressure on the piston; if the solenoid is de-energized,
the piston moves toward the pilot's input shaft. The end of
the piston has a cam surface which, on contact with the input
shaft, causes the piston to rotate. The piston is geared to
the metering valve, hence rotation of the piston causes fuel
flow to change. This mechanism ensures that in the event of an
electrical failure, the metering valve automatically aligns it-
self to the pilot's demand. The rate of change of fuel flow is
a function of the piston velocity and the cam contour. The
baseline system was designed to have the piston velocity held
constant by a cavitating venturi. The transition from automa-—
tic to manual can be made to give a compromise acceleration
schedule from S,L., to 5000 ft, where failure of the computer
would be most hazardous.

The pilot's input schedule is provided by rotation of a lever;
the schedule is given in Figure 38. Rotation of the power lever
is converted by levers and gears to rotation of a resolver,
which sends the input command to the computer. Independent ad-
Justments are provided for ground idle, flight idle and mili-
tary. Emergency setting is increased or decreased by tlie same
as adjustments made to military.

I

EMERGENCY -'\

B

120

MILITARY T

V.

100 /
Vi
80 /

—

60 +
= FLIGHT 1DLE
' /]

GROUND IDLE

40

Ne/ /B~

20

0 20 40 60 80 100
PLA - DEG

Figure 38. PLA Schedule.
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A proportional power turbine overspeed governor is incorporated
in the control. Power turbine speed error is converted to a
pressure signal which is used to vary the head across the
metering valve.

System Manufacturing

The baseline system was made with no particularly difficult
manufacturing problems. Figures 39 and 40 show the main
components of the fluid controller.

Package Design and Mock-Up

Installation designs were submitted to Army, airframe, and
engine manufacturers for review. The application consider-
ed was for a twin-engine helicopter. The designs incorpor-
ate the following suggestions, which were made as the re-
sult of the review:

s

The electronic computer should be mounted on top of
the fluid controller so that the accessory gearbox
can be used for other accessories.

All adjustments should be accessible from the front
of the engine (ground idle, flight idle, military
and head regulator).

The PLA lever should be at the front of the control
rotating side by side, to suit twin- or single-
engine installation.

The fuel outlet should be directed toward the com-
bustion chamber.

The barrier filter should have a "pop out" device
to indicate when the element should be changed and
be accessible from the front of the engine.

All electrical components and harnesses between
these components and the computer should be between
the accessory gearbox and the control to decrease
vulnerability.

Figure 41 shows a front engine view of a mock-up of the con-
trol and reflects compliance with the above suggestions.
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Figure 41. Advanced Engine Control Mock-Up.

Calibration and Testing

The fluid controller, the breadboard electronic computer,
and the analog computer twin-engine simulation closed-loop
test setup was used for fluid controller testing.

The PLA was calibrated by putting the power lever in a
fixed position and rotating the output resolver until it
was roughly positioned; fine adjustments of ground idle,
flight idle, and military were then done with the external
adjustments provided.

The metering head regulator was set by positioning the
metering valve a known number of steps from shutoff and ad-
justing the regulator to give the required fuel flow. A
metering valve calibration curve of steps against fuel flow
is shown in Figure 42. A curve of metering valve accuracy
compared to specification requirements is shown in Figure
43. It can be seen that the metering valve falls 7ithin
the specification requirements.
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Figure 44. Manual System Calibration.

The metering valve position is correlated with the feedback
signal by rotatirg the resolver to give the correct output.

The system is very simple and easy to calibrate, requiring only
the adjustments of two resoclvers and a head regulator.

A fuel flow calibration curve for the manual system is shown in
Figure 44. This calibration is by internal components and is
not externally adjustable.

The metering head regulator transient response was determined
on manual flow control by a step input applied to PLA (which on
manual is connected directly to fuel metering valve). The fuel
flow response for small step changes in PLA can be approximated
by first order lag with a measured time constant of 25 ms.

Test results are shown in Figure 45. The 60-Hz ripple on both
the input and output signals is line frequency interference.
The specified response was 60 ms or less based on simulation
studies. Therefore, the transient performance of the head
regulator is satisfactory.
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The transient performance during a change from automatic to
manual control is shown in Figure 46. This demonstrates

that the time delay principle works satisfactorily. However,
no attempt was made to approximate an acceleration schedule.
This can be done by changing the cam surface of the changeover
piston. The cam profile used to demonstrate the principle was

a simple helix.

120° § :';,:‘
116° .
}80 T T ¥ V] 51 HIgsr ¥ x’;;:
LB/HR : 1 YWOTNUYNETNIN SWT T
N P et O O 0 D M L FUEL FLOW OUTPUT I
[ TIME CONiTANT 425 MIILISECONDS i T T U R
;. - .. : i T .
i
340 g7 I
LB/HR M1 T

Figure 45. Metering System Transient Response.

Figure 46. Automatic to Manual Changeover.
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The system calibration was followed by closed-loop testing to
establish the steady-state and dynamic performance of the con-
trol in conjunction with the engine simulation.

Endurance Testing

The final phase of testing was to evaluate the endurance of
the fluid controller and demonstrator electronic computer by
cycling the complete system with a Hewlett Packard computer.
The endurance test setup is shown in Figures 47 and 48. The
following endurance testing was completed:

Hot Day Missicn Profile - 3 cycles conmpleted, 3 hr/cycle

Room Temperature Endurance - 30 hr

Hot Day Endurance - 50 hr
Cold Day Endurance - 20 hr
Contamination Testing - 18 hr

The total running for the program of the baseline fluid con-
troller (including pumps) was 277 hrs.

The fluid controller was disassembled after completing the en-
durance test and was found to be in good condition. The met-
ering valve and head regulator showed good resistance to wear.
Figure 49 shows the metering valve and head regulator after
contamination testing which was the last phase of testing; the
wiping action of the metering valve in removing dirt can be
seen.

Pump Selection

The requirements for an advanced fuel pumping system for a 2-
to 5-1b/sec engine size can be divided into two categories:

Category I Requirements common to all aircraft
fuel pumps.

V/L _capability - The ability to pump with a two-phase
fluid at the pump inlet.

78



RAFLUID
B0/ CONTROLLER

¢ SRR o

ELECTRONIC CCMPUTER

)

TIGV

s

ACTUATOR |

3

Figure 47. Endurance Test Setup.

79



*dniag 3saL soueinpum -g¥ 2anbtd

"~ 'STYN9IS LNdNI

.

a

7

¥ QUYMOVd-L13TMIH OL ; %  ¥3LNdW0D
2 INO¥ 19313

) -

431 IWOWVYNAQ
o
»v‘-

o _ o LN JIALNGWOD D INO¥LIIT3

80



*§389], doURINPUY I93FY SIeMpIeH TOIFUOD

‘6 2anbtd

81



Contaminated Fuel - The pump must operate without excess
performance degradation on contaminated fuel per MIL-E-
5007cC.

Dry Lift - The ability to self prime from a low fuel supply
without assistance.

Starting - The pump must supply fuel at required pressure
rise and flow rate to start the engine at 10<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>